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Abstract. In this study the scissors mode 1+ states are systematically investigated within the rotational
invariant Quasiparticle Random Phase Approximation (QRPA) for 130–136Ba isotopes. We consider the
1+ vibrations generated by the isovector spin-spin interactions and the isoscalar and isovector quadrupole-
type separable forces restoring the broken symmetry by a deformed mean field according to A.A. Kuliev
et al. (Int. J. Mod. Phys. E 9, 249 (2000)). It has been shown that the restoration of the broken rotational
symmetry of the Hamiltonian essentially decreases the B(M1) value of the low-lying 1+ states and increases
the collectivization of the scissors mode excitations in the spectroscopic energy region. The agreement
between the calculated mean excitation energies as well as the summed B(M1) value of the scissors mode
excitations and the available experimental data of 134Ba and 136Ba is rather good. A destructive interference
between the orbit and spin part of the M1 strength has been found for barium isotopes near the shell
closer. For all the nuclei under investigation, the low-lying M1 transitions have ∆K = 1 character as it is
the case for the well-deformed nuclei.

PACS. 21.10.Re Collective levels – 21.10.Hw Spin, parity, and isobaric spin – 21.60.Ev Collective models

1 Introduction

The existence of the low-lying orbital magnetic dipole scis-
sors mode states is now well established as fundamental
excitations in deformed nuclei [1]. The presence of states
with orbital character has been firstly announced theo-
retically within the semi-classical two-rotor model [2] and
the interacting boson model [3], with proton-neutron de-
grees of freedom. This mode was first observed in 156Gd in
high-resolution electron scattering experiments in 1984 [4].
Nowadays this mode has been found for isotopes with per-
manent deformation in the wide region beginning from
the light nuclei (such as 46Ti) up to the actinides also
including the transitional and γ-soft nuclei (see refs. [1,
5] and references therein). The remarkable features of the
scissors mode obtained from experimental results are the
quadratic dependence of the summedB(M1) values on the
ground-state deformation parameter δ and the strong frag-
mentation of theM1 strength over the pairing gap energy
up to 4MeV excitation energy [6–9] concentrated around
3MeV. This mode was first studied in schematic mod-
els [10–13]. After its experimental discovery, microscopic
approaches were developed for a more detailed investiga-
tion of its properties [14–18]. Several studies have been
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devoted to the δ2 law. This has been described with fair
success within phenomenological models [19–22] as well as
in microscopic approaches [23–28]. The microscopic cal-
culations yield a strength more or less quadratic in the
deformation parameter [23–28]. More recently, investiga-
tions using rotational invariant QRPA [27], the sum-rule
approach [19] and the generalized coherent model [20]
have shown that these models reproduce the excitation en-
ergy as well as the quadratic dependence of the summed
M1 strength of the mode in heavy even-even deformed
nuclei. For recent reviews on theoretical aspects of the
scissors mode see refs. [29,30]. In most cases, particu-
larly for strongly deformed rare-earth nuclei near mid-
shell, the variations of the mean excitation energy and
the totalM1 excitation strength of the mode are small [8,
21]. However, while the global properties of the scissors
mode are reasonably understood in regions of moderate
to large deformations, the nature of the scissors mode
is an open question in nuclei near shell closures where
the simple geometrical picture of a scissors-like motion
of deformed proton and neutron bodies breaks down. It
would be desirable to confirm the features of the scissors
mode in other γ-soft deformed nuclei. The dipole exci-
tation strength distribution has been investigated exper-
imentally in less-deformed transitional nuclei, e.g., in the
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γ-soft nuclei 194,196Pt [31,32], 134,136Ba [33,34], in transi-
tional osmium nuclei [35], and in several vibrational nuclei
of the tellurium isotopic chains [36,37] and 94Mo [38]. In
all of these cases the scissors mode was observed, however,
with decay properties differing considerably from the find-
ings in well-deformed rotors because of the loss of axial
symmetry and the establishment of the d-parity quantum
number [39]. Unfortunately, the scarcity of the data of
transition nuclei does not allow the systematic analysis of
the properties of the mode as a function of deformation
parameters or of the mass number A. Available experi-
mental data of two platinum and barium isotopes are not
sufficient for a decisive conclusion for the scissors mode
properties of transitional nuclei. It would be important to
extend the (γ, γ′) studies to γ-soft nuclei with improved
sensitivity in order to firmly establish deviations from the
δ-dependence in nuclei near shell closure (N,Z) = 82. In
view of this, the Ba isotopic chain with its stable even-
even isotopes, with a considerable ground-state deforma-
tion [40–42], offers the rare possibility to study the scissors
mode properties in nuclei of the A = 130 mass region.

Theoretical investigations of the scissors mode for
transitional nuclei, like Ba isotopes around A = 130, are
scant. By now, there have been several calculations [43–
46] dealing with 1+ excitations in a number of Ba nu-
clei, which were reported two decades ago. The predictive
power of these calculations, however, is limited in gen-
eral. In papers [44,45] IBA-2 has been previously applied
to even-even 128–134Ba. The phenomenological IBA-2 pre-
dicts a single state below 4MeV but QRPA, which uses a
deformed single-particle basis, predicts two [46] with small
B(M1) values. Whereas the experimental M1 strength
distributions in 134Ba [33] up to 4MeV exhibit much more
fragmentation and larger amount of B(M1) = 0.56µ2

N
(than predicted by the above-mentioned calculations).

Based on these observations and by applying a method
developed in [27] for 130,132,134,136Ba isotopes, the frag-
mentation of the scissors mode 1+ states and the depen-
dence of the B(M1) transition strength on the deforma-
tion parameter have been investigated in this study. Al-
though the underlying assumption of an axially deformed
mean field may be questioned for the heavy barium nuclei,
at present it represents the only possible approach to an
improved understanding of the fine structure experimen-
tally observed for the dipole modes [33,34]. The high den-
sity of the observed dipole states cannot be explained with
the assumption that the nucleus is spherical in the ground
state, and this is in fact confirmed by the previous cal-
culations in QRPA [47,48] and the quasiparticle-phonon
model [49]. The use of the method presented in [27] for
this study is motivated by the satisfactory description of
the experimental fragmentation and δ2-dependence of the
summed B(M1) value of the scissors mode in Sm, Nd,
Ce and Te isotopic chains on the basis of the rotationally
invariant QRPA [27,28,50].

2 Theory

It is well known that the single-quasiparticle Hamiltonian
of deformed nuclei is not invariant under rotational trans-
formations. Therefore, the low-lying branch of Kπ = 1+

excitations does not have vibrational nature, but rather
is associated with rotational band of the ground state
with energy ω0 = 0. Separating the spurious state with
the energy ω0 = 0 from the vibrational ones is one of
the fundamental requirements for the microscopic mod-
els. Various methods were elaborated for the separation
of the spurious state from the vibrational ones [51–55].
A complete separation of the rotational mode from the
vibrational ones has been achieved in the ref. [54] using
the deformed mean field derived in Hartree approxima-
tion self-consistently from the separable rotational invari-
ant quadrupole-quadrupole interaction in schematic RPA.
For recent reviews on the theoretical aspects of the scissors
mode, see [30]. A more practical method of restoring the
broken symmetry by means of the isoscalar interactions in
the QRPA for the separation of spurious states was sug-
gested in ref. [52]. In the previous approaches and refs. [14,
56,57] the symmetry-restoring constraint was applied to
the proton and neutron pieces of the Hamiltonian. Here
we enforce such a constraint explicitly and separately on
the isoscalar and isovector terms of the Hamiltonian. This
enables us to disentangle the isoscalar from the isovector
contributions. The generalization of the method for sepa-
ration of the spurious rotational state with zero energy to
a realistic case in which two different isoscalar and isovec-
tor restoring interactions in the Hamiltonian are present
has been performed in [27].

Assuming that the isoscalar h0 and isovector h1 restor-
ing interaction determined in [27] and the spin-spin forces
produce the 1+ states in deformed nuclei, the model
Hamiltonian representing these states could be considered
as

H = Hsqp + h0 + h1 + Vστ . (1)

Here, Hsqp is the Hamiltonian of the single-quasiparticle
motion and Vστ takes into account the spin-isospin inter-
action of the form

Vστ =
1

2
χστ

∑

i6=j

~σi~σj~τi~τj , (2)

where, ~σ and ~τ are the Pauli matrices that represent the
spin angular-momentum operator and the isospin, respec-
tively.

According to ref. [27] the rotational invariance of the
single-quasiparticle Hamiltonian can be restored with the
aid of a separable isoscalar and isovector effective interac-
tion of the form

h0 = − 1

2γ0

∑

v

[

Hsqp − V1, Jv
]+[

Hsqp − V1, Jv
]

, (3)

and

h1 = − 1

2γ1

∑

v

[

V1(r), Jv
]+[

V1(r), Jv
]

, (4)
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where

γ(v) =
[

J+
v ,

[

Hsqp, Jv
]]

QRPA
,

γ
(v)
1 =

[

J+
v ,

[

V1(r), Jv
]]

QRPA
, (5)

and

γ(−1) = γ(+1) = γ,

γ
(−1)
1 = γ

(+1)
1 = γ1,

γ0 = γ − γ1 γ1 = γn1 − γp1 . (6)

Here, the isoscalar γ0 and isovector γ1 coupling param-
eters are determined self-consistently by the mean-field
parameters. Jv are the spherical components of the angu-
lar momentum (v = ±1). We assume that we are given
two static axially symmetric potentials, an isoscalar po-
tential V0(r) and isovector potential V1(r), which describe
the average nuclear field. According to [58] the isovector
part of the nuclear mean field can be written as

V1(r) = η
N − Z
A

τzV0(r). (7)

Here, the parameter η = V1

4V0

and V0 and V1 are the
isoscalar and isovector depth of the potential wells, re-
spectively.

In the QRPA method, the collective 1+ states are con-
sidered as one-phonon excitations described by

|Ψi〉 = Q+
i |Ψ0〉

=
1√
2

∑

ss′,τ

[

ψi
ss′(τ)C

+
ss′(τ)−ϕi

ss′(τ)Css′(τ)
]

|Ψ0〉, (8)

where Q+
i is the phonon creation operator, |Ψ0〉 is the

phonon vacuum which corresponds to the ground state
of the even-even nucleus and C+

ss′ (Css′) is the two-
quasiparticle creation (annihilation) operator. The two-
quasiparticle amplitudes ψi

ss′ and ϕ
i
ss′ , are normalized by

∑

ss′τ

[

ψi
ss′

2
(τ)− ϕi

ss′
2
(τ)

]

= 1. (9)

Following the well-known procedure of the RPA method,
one could find the eigenfunctions and eigenvalues of the
Hamiltonian. To obtain the excitation energies, one has to
solve the equation of motion

[

Hsqp + h0 + h1 + Vστ , Q
+
i

]

= ωiQ
+
i . (10)

Omitting details of the solution of (10), we give only the
most necessary equations. In particular, the secular equa-
tion for the excitation energy of 1+ states can be written
as

ω2
i Jeff (ωi)

= ω2
i

[

J − 8χστ
X2

Dσ

+
ω2
i

γ1 − F1

(

J2
1 − 8χστ

JX2
1 − 2J1XX1

Dσ

)]

= 0, (11)

and

Dσ = 1 + χστFσ, X = Xn −Xp,

γ1 = γn1 − γp1 , J1 = Jn
1 − Jp

1 . (12)

All the formulae are given clearly in [27]. One of the so-
lutions of eq. (11), with ω0 = 0, belongs to the rotational
excitation state because, as shown [54], it is characterized
by definite values of the static electrical and magnetic mo-
ments, which coincide with the 2+

g state in the generalized
model. The static limit of the function Jeff (ω0 = 0) = Jσ
determines the moment of inertia of the nucleus and co-
incides in the form with the well-known expression in the
cranking model including the spin-spin forces [59]. The
remaining solutions of (11) with ωi > 0 describe the har-
monic vibrations of the system, lying above the threshold
of the first two-quasiparticle energy.

3 Magnetic dipole properties of the 1+ states

Owing to the symmetries of the spin-spin and restoring
interactions, and the magnetic dipole operator, the most
characteristic value of the 1+ states is the M1 transition
probability of the excitation from the ground state, which
can be written in the form [27]

B
(

M1, 0+ → 1+
i

)

=
3

4π

∣

∣

∣

∣

Rp(ωi) +
∑

τ

(

gτs − gτl
)

Rτ (ωi)

∣

∣

∣

∣

2

µ2
N , (13)

where

Rp(ωi) =
∑(p)

µ

εµjµLµ

(

ψi
µ + ϕi

µ

)

,

Rτ (ωi) =
∑(τ)

µ

εµsµLµ

(

ψi
µ + ϕi

µ

)

.

Here εµ are two-quasiparticles energies and in the usual
notation Lµ = usvs′−us′vs. The single-particle matrix el-
ements of the spin (s+1) and angular-momentum operator
(j+1) are denoted as sµ and jµ. gs and gl are the spin and
orbital gyromagnetic ratios of free nucleons, respectively.

The energy-weighted sum rules [EWSR] for the M1
transitions are given as

2
∑

i

ωiB
(

M1, 0+ → 1+
i

)

=
[

~µ+,
[

H, ~µ
]]

QRPA
, (14)

where
~µ = gns ~sn + gps~sp + gpl

~lp .

Let us calculate the right-hand side of the sum rule in the
QRPA

[

~µ+,
[

H, ~µ
]]

QRPA

=
3

4π

[

γp+
∑

τ

(

gτs−gτl
)

δτ−
(

γp−γpl
)2

γ−γ1
− γ

p2

l

γ1

]

µ2
N , (15)
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where

γ = γn + γp, γ1 = γn1 − γp1 ,

γτ = 2
∑(τ)

µ

εµL
2
µj

2
µ, γτ1 = 2

∑(τ)

µ

(V1)µL
2
µj

2
µ,

δτ = 2
∑(τ)

µ

εµL
2
µs

2
µ.

It is important to state that the last two terms in the
square brackets of (15) represent the contribution of the
effective forces h0 and h1 to the sum rule and noticeably
affect it.

4 Results and discussion

The numerical calculations have been carried out for a
wide range of deformation parameters in the even-even
130–136Ba isotopes. The single-particle energies are ob-
tained from the Warsaw deformed Woods-Saxon poten-
tial [60]. The basis contains all discrete and quasi-discrete
levels in the energy region up to 3MeV. The mean-field
deformation parameters δ2 are calculated according to [61]
using deformation parameters β2 defined from experimen-
tal quadrupole moments [40]. The pairing-interaction con-
stants chosen according to Soloviev [62] are based on the
single-particle levels corresponding to the nucleus in ques-
tion. The calculated values of the pairing parameters ∆
and λ corresponding to the respective GN and GZ and
the mean-field deformation parameters δ2 are shown in
table 1. The model contains a single parameter of isovec-
tor spin-spin interactions. The spin interaction strength
was chosen as χστ = 40/AMeV [63]. This value allows a
satisfactory description of the scissors mode fragmentation
in well-deformed rare-earth nuclei (see [27]).

Here we want to study the effect of separation of
the spurious rotational states to the properties of the
scissors mode 1+ states. The advantage of separation of
the spurious states can be demonstrated by the compar-
ison of the results of the rotational invariant QRPA and
the non-rotational invariant one. Distribution of the M1
strength for the different RPA solutions ωi gives impor-
tant information about the role of effective interactions in
the summed B(M1) value of the scissors mode. Distribu-
tions of the calculated B(M1) transition strengths in the
130,132,134,136Ba isotopes with respect to 1+ excitations are
represented in fig. 1 and fig. 2.

As seen from the top plots in fig. 1, a considerable con-
sequence of the use of the rotational invariant model (l.h.s.
plots of fig. 1) is the redistribution of the 1+ states and
the decreasing of the summed B(M1) values at energies
up to 4MeV in 130Ba. For example, in case of using the
Hamiltonian with broken rotational symmetry (r.h.s. plots
of fig. 1), the summed B(M1) = 1.867µ2

N , while in the ro-
tational invariant model, the summed B(M1) = 1.08µ2

N .
In addition, the analysis shows that in the non-rotational
invariant model, the spectroscopic 1+ states are weakly
collective. Thus, we see that the models which use the

Table 1. Pairing correlation parameters (in MeV) and δ2 val-
ues for the Ba isotopes.

N ∆n λn GNA ∆p λp GZA δ2

74 1.3 −9.091 20.0 1.2 −5.703 23.0 0.171
76 1.3 −8.741 20.0 1.2 −6.283 23.0 0.146
78 1.2 −8.365 20.5 1.1 −6.863 19.5 0.129
80 1.3 −7.891 22.0 1.2 −7.509 21.0 0.106

Hamiltonian with broken rotational symmetry strongly
overestimate theM1 strength at low energy. These results
indicate an importance of the models which are free from
the low-energy spurious states. It is shown in [64] that tak-
ing into account the rotational invariance and separation
of the zero energy spurious solutions is important for a
correct description of the scissors mode 1+ states and the
ground-state correlations in high versions of the QRPA.
The introduction of the restoring forces increases the frag-
mentation of the scissors mode at low energies and causes
collectivization of the states in question. For instance, in
132Ba, apart from the isoscalar forces, the presence of the
isovector effective restoring interactions in the Hamilto-
nian (1) increases the number of 1+ states and the distri-
bution of the summed B(M1) value at low energy (l.h.s of
the bottom plots of fig. 1). Comparing these results with
the ones obtained using only the isoscalar restoring forces
(r.h.s. of the bottom plot in fig. 1) we observe that, in
addition to the isoscalar forces, the consideration of the
isovector restoring forces in calculations causes the split-
ting of the states with large B(M1) strengths and frag-
ments the M1 strength into more levels. For example, in
the case h1 = 0 the state with energy ω = 3.080MeV and
B(M1) = 0.182µ2

N is split into two states with energies
ω = 3.074 and B(M1) = 0.142µ2

N and ω = 3.149MeV
and B(M1) = 0.046µ2

N , respectively. Whereas, the most
collective orbital state at energy ω = 2.844MeV with
B(M1) = 0.312µ2

N is little influenced. Thus, the consider-
ation of the isovector restoring forces in the calculations
causes a redistribution of the states and fragments the
summed M1 strength into more levels. It is important
to state that the restoring forces h0 and h1 decrease the
value of the energy-weighted sum rule for M1 transitions
in the quasiparticle model of about 15 percent. The sum
of the contributions of the three interactions included si-
multaneously in the Hamiltonian (1) is smaller than the
sum of their contributions calculated separately. This fact
shows the importance of the interference between these
interactions on low-lying 1+ excitations.

Now, in the following, we shall discuss 134Ba and com-
pare the calculated results with the experimental data
of [33], which are shown in the top plots of fig. 2. In this
nucleus theory predicts many more low-lying 1+ states
than experiment. There exists one collective state with
relatively large B(M1) = 0.305µ2

N at energy 2.612MeV.
The orbit-to-spin ratio of the matrix elements of the or-
bital and spin parts of the M1 transition operator for this
state is Ml/Ms = −19. This state could be identified with
the experimentally observed fragment of the scissors mode
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Fig. 1. Energy diagram of B(M1) values calculated for 130Ba and 132Ba isotopes in the QRPA using different approximations
for the effective forces. Only states with B(M1) ≥ 0.01µ2

N are displayed. Detail of the approximation is given in the text.

with B(M1) = 0.307µ2
N at 2.939MeV. Besides, at low-

energy the theory indicates the presence of one weakly
collectivized spin-vibrational 1+ state at energy 2.583 with
B(M1) = 0.08µ2

N for which Ml/Ms = +5.10−2. The ex-
perimental counterpart of this state could be the state at
2.571MeV with B(M1) = 0.08µ2

N [33].

It is well known that the Gamov-Teller β-decay is se-
lective to the spin contribution of states. Hence, because
of the spin character of the state at 2.571MeV, the β-
decay excitation probability should be considerably dif-
ferent (bigger) from the orbital scissors mode state at
energy 2.939MeV. The fact that the log ft value of the
state at 2.571MeV is lower than that of the orbital 1+

state at 2.939MeV observed in experiment [65] indicates
a larger spin content of the former state than that of the
1+ state at 2.939MeV. Therefore, from this comparison
and from the decay characteristics of these states, it can
be expected that the state at 2.571MeV observed earlier
in β-decay [65] and recently in photon scattering experi-
ment most probably has spin and parity 1+.

As can be seen from the figures the calculation offers
a few weak M1 transitions between 3.5MeV and 4MeV

with summed B(M1) = 0.10µ2
N . They have a high orbit-

to-spin ratio and belong to the scissors mode states which
may correspond to some weaker dipole excitations with
summed B(M1) < 0.08µ2

N clustered at the same energy
interval in the experiment.

Comparative characteristics of the low-lying 1+ excita-
tions of 134Ba, calculated with the non-rotational invari-
ant (1) and the rotational invariant Hamiltonians with
the isoscalar (2) and isoscalar plus isovector (3) restoring
forces are cited in table 2. Here the excitation energies,
B(M1) probabilities and orbit-to-spin ratio are also given.

The calculations show that upon taking into account
the rotational invariance the calculated energies are al-
most similar to each other. Contributions to the summed
B(M1) coming from the isoscalar part of the restoring
forces are larger than the contributions of the isovector
restoring forces. However, the consideration of the isovec-
tor restoring forces in the calculations causes a redistri-
bution of the M1 strength and influences strongly the
orbit-to-spin ratio. The absolute values Ml/Ms fluctuate
considerably less in the non-rotational invariant model, al-
though they are also extremely sensitive to the effects of
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Fig. 2. Comparison of the B(M1) values calculated for the 134Ba and 136Ba nuclei in the rotational invariant QRPA with
experimentally observed M1 dipole excitations. We present the dipole states with K = 0 (dashed line). The NRF experimental
data (r.h.s) are taken from [33] for 134Ba and from [34] for 136Ba. Open bars are plotted if I = 1 is uncertain. A tentative
parity assignment (+) is made if the state is also populated in the β+-decay of the ground state of 134La. Only states with
B(M1) ≥ 0.01µ2

N are displayed.

Table 2. Comparison of ωi, B(M1) and Ml/Ms ratio of 134Ba calculated with the non-rotational invariant (1) and rotational
invariant Hamiltonians including the isoscalar (2) and isoscalar plus isovector (3) restoring forces. Only states with B(M1) ≥
0.01µ2

N are shown.

H = Hsqp + Vστ H = Hsqp + h0 + Vστ H = Hsqp + h0 + h1 + Vστ

(1) (2) (3)

ωi B(M1)
Ml/Ms

ωi B(M1)
Ml/Ms

ωi B(M1)
Ml/Ms

(MeV) µ2
N (MeV) µ2

N (MeV) µ2
N

2.556 0.72 4.49 2.579 0.14 0.62 2.588 0.08 0.17

2.604 0.22 −4.85 2.603 0.19 −6.3 2.612 0.31 −19

2.615 0.06 −2.64 2.693 0.02 2.2 2.764 0.03 4.5

2.714 0.15 5.18 2.909 0.15 4.6 2.994 0.01 −0.37

2.744 0.10 −4.02 3.236 0.01 1.1 3.119 0.08 −1.2 · 104

3.240 0.03 4.03 3.805 0.02 3.2 3.810 0.02 2.5

3.785 0.05 4.79 3.916 0.01 19 3.926 0.01 14

– – – 3.972 0.06 20 3.972 0.06 18
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Table 3. Comparison of ω and summed B(M1) values calculated with the rotational non-invariant (1) and rotational invari-
ant Hamiltonians including the isoscalar (2) and isoscalar plus isovector (3) restoring forces with semi-empirical non–energy-
weighted [22] and linear energy-weighted [15] sums with experimentally observed M1 dipole excitations (below 4 MeV). The
experimental data are taken from [33] for 134Ba and [34] for 136Ba.

ω (MeV)
∑

i
B(M1, i) (µ2

N )
∑

i
ωiB(M1, i) (MeV · µ2

N )
Nuclei

(1) (2) (3) [22] exp. (1) (2) (3) [22] exp. (1) (2) (3) [15] exp.
130Ba 3.21 3.22 3.20 3.96 – 2.15 1.09 1.08 0.92 – 6.90 3.51 3.46 4.28 –
132Ba 3.05 3.15 3.11 3.63 – 1.75 0.81 0.78 0.63 – 5.34 2.55 2.43 2.83 –
134Ba 2.73 2.88 2.88 3.68 3.14 1.59 0.61 0.60 0.50 0.56 4.34 1.76 1.73 2.21 1.76
136Ba 2.81 3.13 3.17 4.96 3.11 1.13 0.25 0.26 0.30 0.26 3.18 0.78 0.82 1.29 0.81

the restoring forces. Note that, in the independent quasi-
particle model, the calculation shows that the low-lying
(up to energy 4MeV) two-quasiparticle 1+ states have
mainly orbital character, with the quasiparticles filling the
deformed orbitals of the same j-shell near the Fermi sur-
face (subshells g9/2 for protons and h11/2 for neutrons).

It is instructive to investigate the possible role of the
K = 0 branch of the 1+ states at low energy. The the-
ory indicates the presence of two weakly collectivized
spin-vibration 1+ states with K = 0 at energy ω1 =
2.588MeV with B(M1) = 0.034µ2

N and ω2 = 2.711MeV
with B(M1) = 0.011µ2

N in 134Ba. The summed dipole
width of these states is 2.3meV. The contribution of these
two states to the total dipole decay width below 4MeV is
smaller than 2%. Thus our results show that in 134Ba all
the stronger M1 transitions likely have a ∆K = 1 char-
acter as in the well-deformed nuclei [9]. Note that this
picture is peculiar to all the investigated barium isotopes
(see fig. 1 and fig. 2).

The QRPA predictions for the low-energyM1 strength
distributions in 136Ba and the corresponding experimental
data are displayed in the bottom part of fig. 2. While the
data show more fragmentation, the total dipole strength
is well accounted for. The calculation predicts a few scis-
sors mode 1+ states up to energy 4MeV with summed
B(M1) = 0.26µ2

N and average energy ω = 3.17MeV in
accordance with the experimental data [34] of B(M1) =
0.30µ2

N with average energy ω = 3.10MeV. The main con-
tribution to the summed B(M1) gives the orbital state at
energy 3.043MeV with transition probability B(M1) =
0.12µ2

N . The corresponding orbital-to-spin ratio for this
state isMl/Ms = −13. Besides, at an energy below 3MeV
theory indicates the presence of a few weekly collectivized
spin-vibration 1+ states with summed B(M1) = 0.07µ2

N ,
for which Ml/Ms ≈ −2.10−1.

The state with orbital character has not been found in
the theoretical spectrum of up to 4MeV in the semimagic
nucleus 138Ba (N = 82). In NRF experiments [42] no
M1 excitations could be observed in the magic isotope
138Ba below 4MeV. In this nucleus the predicted lowest
1+ states with B(M1) = 0.12µ2

N at 4.9MeV has spin-
vibrational character (Ml/Ms = 10−2). Similar situations
are observed in 140Ce, 142Nd and 144Sm nuclei which also
have N = 82 neutrons [27,28]. This case shows the im-
portance of the neutron-proton interaction outside of the
closed shells in the formation of the scissors mode.

Besides the B(M1) strength another important quan-
tity of the orbital 1+ states is the average value of the scis-
sors mode excitation energies ω. In order to establish the
energy centroid of the scissors mode excitations, we use
the energy-weighted and non–energy-weighted sum rules
of the M1 transition matrix elements below 4MeV,

ω =
∑

i

ωiB(M1, ωi)/
∑

i

B(M1, ωi), (16)

and we are especially interested in the A-dependence of ω
and in comparing the experimental data to the theoretical
expectations.

The results for the mean energy of the scissors mode
excitations, the summed B(M1) and the EWSR, cal-
culated with the rotational non-invariant (1) and rota-
tional invariant Hamiltonians including the isoscalar (2)
and isoscalar plus isovector (3) restoring forces, the semi-
empirical summed B(M1) [15], the energy-weighted sum
rule [22] and the experimentally observed M1 dipole ex-
citations are given in table 3.

The results of the calculations show that the rotational
non-invariant model (1) exceeds the experimental values
of the B(M1) more than two times. Indeed, the intro-
duction of the restoring forces (3) essentially reduces the
B(M1) strength and decreases substantially the discrep-
ancy with the experiments. As can be seen from table 3
the predicted semi-empirical values of the summed M1
strengths [22] are close to the measured values for 134Ba
and 136Ba. However, the mean excitation energies of the
scissors mode calculated in this model are larger than the
ones deduced from the experiment. On the other hand,
the semi-empirical results of the EWSR [15] overestimate
the experimental data by almost a factor of 1.5. Thus,
we see that the models which use the Hamiltonian with
broken symmetry strongly overestimate the summed M1
strength at low energies.

5 Conclusions and outlook

In this paper, the QRPA approach suggested in [27] has
been carried out to describe Kπ = 1+ states in the even-
even 130–136Ba nuclei. The effects of the separation of the
spurious state on the properties of scissors mode excita-
tions have been investigated. The marked differences be-
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tween the results for 1+ states, calculated with and with-
out taking into account the rotational invariance indicate
the importance of the approaches which are free from spu-
rious low-energy solutions. A separation of the rotational
state from the 1+ states changes somewhat the distribu-
tion of the B(M1) strength in the spectroscopic energy re-
gion and increases the fragmentation of the scissors mode
1+ excitations in agreement with the experimental data.
Similarly to well-deformed nuclei low-lyingM1 transitions
mainly have ∆K = 1 character for all the nuclei under
investigation. The relative contribution of ∆K = 0 tran-
sitions to the total dipole decay width below 4MeV is
smaller than 2% for all nuclei under investigation and the
M1 strength is usually smeared out over the entire en-
ergy interval between 2 and 4MeV with little or no clus-
tering. The mixing of the scissors mode states with the
spin-vibrational 1+ states is poor due to the different se-
lection rules of the matrix elements of the orbital and spin
operators. The destructive interference between the orbit
and spin parts of the M1 strength has been found for the
134Ba and 136Ba isotopes near the shell closer closure.

Consideration of isovector restoring forces in the calcu-
lations causes the splitting of the states with large B(M1)
strengths and fragments theM1 strength into more levels.
The choice of the isoscalar and isovector forces in a self-
consistent manner with mean-field potentials based on the
rotational invariance of the Hamiltonian makes it possible
to treat the scissors mode more rigorously without any ex-
tra quadrupole-quadrupole interaction parameter which is
different in the case of the β- and γ-vibrations. Obviously,
more experimental data with good accuracy are needed to
obtain detailed information on the signature of the scis-
sors mode M1 states and to draw a decisive conclusion in
transition nuclei.
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